Projection methods for stochastic differential equations with conserved quantities
نویسندگان
چکیده
منابع مشابه
Evaluating methods for approximating stochastic differential equations.
Models of decision making and response time (RT) are often formulated using stochastic differential equations (SDEs). Researchers often investigate these models using a simple Monte Carlo method based on Euler's method for solving ordinary differential equations. The accuracy of Euler's method is investigated and compared to the performance of more complex simulation methods. The more complex m...
متن کاملExplicit methods for stiff stochastic differential equations
Multiscale differential equations arise in the modeling of many important problems in the science and engineering. Numerical solvers for such problems have been extensively studied in the deterministic case. Here, we discuss numerical methods for (mean-square stable) stiff stochastic differential equations. Standard explicit methods, as for example the EulerMaruyama method, face severe stepsize...
متن کاملWaveform Relaxation Methods for Stochastic Differential Equations
The solution of complex and large scale systems plays a crucial role in recent scientific computations. In particular, large scale stochastic dynamical systems represent very complex systems incorporating the random appearances of physical processes in nature. The development of efficient numerical methods to study such large scale systems, which can be characterized as weakly coupled subsystem...
متن کاملNumerical Methods for Stochastic Differential Equations
Approximately a quarter century ago, very early in my career when I was publishing rather theoretical results about stochastic differential equations, I received a letter (this predates e-mail) from a fellow researcher who had seen my work and was asking if I had an algorithm suitable for implementing my ideas on a computing machine. Not only did I not have such an algorithm, the idea had not o...
متن کاملNumerical Methods for Stochastic Differential Equations
Stochastic differential equations (SDE's) play an important role in physics but existing numerical methods for solving such equations are of low accuracy and poor stability. A general strategy for developing accurate and efficient schemes for solving stochastic equations is outlined here. High-order numerical methods are developed for the integration of stochastic differential equations with st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BIT Numerical Mathematics
سال: 2016
ISSN: 0006-3835,1572-9125
DOI: 10.1007/s10543-016-0614-0